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ABSTRACT

The hexaploid sweetpotato (Ipomoea batatas) is one of themost important root cropsworldwide. However,

its genetic origin remains controversial, and its domestication history remains unknown. In this study, we

used a range of genetic evidence and a newly developed haplotype-based phylogenetic analysis to identify

two probable progenitors of sweetpotato. The diploid progenitor was likely closely related to Ipomoea ae-

quatoriensis and contributed theB1 subgenome, IbT-DNA2, and the lineage 1 type of chloroplast genome to

sweetpotato. The tetraploid progenitor of sweetpotato was most likely I. batatas 4x, which donated the B2

subgenome, IbT-DNA1, and the lineage 2 type of chloroplast genome. Sweetpotato most likely originated

from reciprocal crosses between the diploid and tetraploid progenitors, followed by a subsequent whole-

genome duplication. In addition, we detected biased gene exchanges between the subgenomes; the rate of

B1 to B2 subgenome conversions was nearly three times higher than that of B2 to B1 subgenome conver-

sions. Our analyses revealed that genes involved in storage root formation, maintenance of genome stabil-

ity, biotic resistance, sugar transport, and potassium uptake were selected during the speciation and

domestication of sweetpotato. This study sheds light on the evolution of sweetpotato and paves the way

for improvement of this crop.
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INTRODUCTION

Global food security in the face of the growing world population is

one of the key challenges of this century. Concurrently, crop pro-

duction is threatened by global climate change (Godfray et al.,

2010; Wheeler and Von Braun, 2013; Prosekov and Ivanova,

2018). Development of climate change–resilient crops with

maximum net production is necessary to ensure food security

(Dhankher and Foyer, 2018; Tian et al., 2021). As a nutritious crop

with high production and adaptability to diverse environments,

sweetpotato (Ipomoea batatas, 2n = 6x = 90) has the potential to

address issues of food and nutrition security (Kwak, 2019).

Sweetpotato is an important staple crop worldwide, with an

annual production of �89 million tons, and an important source

of dietary calories, proteins, vitamins, and minerals (Padmaja,

2009; Food and Agriculture Organization, 2019). This important

root crop has a critical role in food security, especially in

developing countries (Food and Agriculture Organization, 2019),

and orange-fleshed sweetpotato plays a crucial part in

combating vitamin A deficiency in Africa (Kurabachew, 2015).

Sweetpotato can be highly productive in the global hot and dry

environment caused by climate change (Nedunchezhiyan and

Ray, 2010). Continued research on sweetpotato breeding will

therefore contribute to food and nutrition security.

Understanding the origin and domestication history of crops is vi-

tal for breeding and genetic engineering efforts. It is also key to

evaluating strategies for genetic resource conservation that

involve wild relatives. Identifying the wild/progenitor species of

a given crop is often very important for breeding because wild/

progenitor species typically have useful genetic traits, such as

high resistance and high yield (Hajjar and Hodgkin, 2007; Kole,

2011). Through hybridization or gene editing, scientists and

breeders can introduce genetic traits from the progenitor

species into the crop to create better varieties (Wallace et al.,

2018). For example, artificial cultivars with higher yield have

been created by crossing two progenitor species of wheat,

markedly increasing the lost genetic diversity of the wheat D

subgenome (Das et al., 2016; Jafarzadeh et al., 2016). For

decades, significant time and effort have been spent in

attempts to generate artificial hexaploids from diploid and

tetraploid wild relatives of sweetpotato (Nishiyama et al., 1975).

However, because the progenitor species of sweetpotato are

still unclear, these experiments have not achieved promising

results. Revealing the origin and domestication history of

sweetpotato is vital for supporting further studies of its biology,

genetics, and genetic engineering and for utilization and

conservation of its wild relatives.

Because of its highly heterozygous and complex

hexaploid genome (Yang et al., 2017; Wu et al., 2018),

the origin of cultivated sweetpotato has been extensively

debated. Three polyploidization scenarios have been

proposed: the autopolyploid hypothesis, the segmental

allopolyploid hypothesis, and the allopolyploidy hypotheses.

The autopolyploid hypothesis suggests that sweetpotato

has an autopolyploid origin, with Ipomoea trifida as the

single progenitor. This hypothesis has gained support from

phylogenetic (Roullier et al., 2013; Muñoz-Rodrı́guez et al.,

2018), genetic linkage (Ukoskit and Thompson, 1997; Kriegner

et al., 2003; Cervantes-Flores et al., 2008; Zhao et al., 2013;
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Mollinari et al., 2020), and cytogenetic analyses (Shiotani, 1988;

Shiotani and Kawase, 1989). The segmental allopolyploid

hypothesis, based on an analysis of 811 conserved single-copy

genes (Gao et al., 2020), proposes that sweetpotato is a

segmental allopolyploid that carries three partially differentiated

subgenomes originally from I. trifida, Ipomoea tenuissima, and

Ipomoea littoralis. The allopolyploidy hypotheses are diverse

and less consistent. Based on cytogenetic analysis, Nishiyama

(1971) suggested that sweetpotato originated from I. trifida 3x,

which is a hybrid between Ipomoea 3 leucantha and

I. littoralis. Austin (1988) suggested that the cultivated

sweetpotato was derived from a hybridization event between

I. trifida and Ipomoea triloba on the basis of morphological

data. Gao et al. (2011), using Waxy (Wx) intron sequence

variation, suggested that sweetpotato arose via hybridization

between I. tenuissima and I. littoralis. However, both

cytogenetic and recent genomic analyses suggest that

sweetpotato (B1B1B2B2B2B2) is composed of two subgenomes

and arose from a cross between a diploid and a tetraploid

progenitor (Shiotani and Kawase, 1987; Yang et al., 2017).

I. trifida has been proposed as the diploid progenitor, whereas

the tetraploid progenitor has remained a subject of

debate (Yan et al., 2022). On the basis of a phylogenetic

analysis of homologous haplotypes, Yan et al. (2021)

suggested that the tetraploid progenitor of sweetpotato was

I. batatas 4x. Subsequently, Muñoz-Rodrı́guez et al. (2022)

identified Ipomoea aequatoriensis as the tetraploid progenitor

of sweetpotato on the basis of morphological and phylogenetic

analyses. However, these hypotheses fail to provide a

reasonable explanation for the origins of the subgenomes, the

chloroplast genome, and the Ib transfer DNAs (IbT-DNAs)

and for the genetic pattern conflict between the nuclear and

chloroplast genomes of sweetpotato. The genetic origin and

domestication history of sweetpotato thus remain unclear.

In this study, we used comparative studies of IbT-DNA insertions

and nuclear, and chloroplast genome variations, as well as a

newly developed haplotype-based phylogenetic analysis (HPA),

to identify the possible progenitors of sweetpotato. We clarified

the two progenitors of sweetpotato and determined their contri-

butions to sweetpotato germplasm, including nuclear subge-

nomes, chloroplast genomes, and IbT-DNA insertions.

We also identified biased gene conversion events between the

subgenomes on the basis of homoelogous haplotypes. We ob-

tained new insights into the role played by selection during the

domestication of cultivated sweetpotato, and identified useful

candidate genes for future breeding and genetic engineering

efforts and evolutionary studies. Our results provide valuable in-

sights into the evolution and domestication of sweetpotato,

paving the way for genetic improvement of this important crop.
RESULTS

Phylogeny and population structure of sweetpotato and
its wild relatives

To investigate the phylogenetic relationships among sweetpotato

and its wild relatives, we analyzed 23 sweetpotato cultivars/land-

races and all putative genomic donors of sweetpotato, represent-

ing a wide range of taxonomic groups, geographic distributions,

and ploidy levels (Figure 1A; Supplemental Table 1). Among the
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Figure 1. Phylogeny and population structure from sweetpotato and its wild relatives.
(A) Phylogenetic tree constructed using the genome-wide genetic variants inferred by the maximum likelihood (ML) method. All nodes are 100% sup-

ported by bootstrap values. The groups are color coded, and the colors in (D)–(F) are consistent. Dashed lines link the phylogenetic position on the tree

(legend continued on next page)

Molecular Plant 17, 1–20, February 5 2024 ª 2024 The Author. 3

The origin and domestication of sweetpotato Molecular Plant

Please cite this article in press as: Yan et al., Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of
sweetpotato, Molecular Plant (2024), https://doi.org/10.1016/j.molp.2023.12.019



Molecular Plant The origin and domestication of sweetpotato

Please cite this article in press as: Yan et al., Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of
sweetpotato, Molecular Plant (2024), https://doi.org/10.1016/j.molp.2023.12.019
diploid relatives, we included five accessions of I. trifida, which is

proposed as the most likely diploid progenitor of sweetpotato, as

well as two wild relatives, I. triloba and I. tenuissima. We also

sampled the 43 wild tetraploid individuals that have previously

been suggested as the possible tetraploid progenitor of

sweetpotato, including Ipomoea tiliacea, I. aequatoriensis,

I. batatas var. apiculata, Ipomoea tabascana, I. batatas 4x (also

named I. trifida 4x in some studies), and potential hybrid

Ipomoea accessions. Detailed information, including ploidy,

original location, and source, can be found in Supplemental

Table 1. The phenotypes of the wild relatives are shown in

Supplemental Figures 1–4.

We constructed phylogenies with coalescence-based and

concatenation approaches based on 6,326 447 whole-genome

variations, and these topologies were consistent (Figure 1A and

Supplemental Figures 5 and 6). In these phylogenetic analyses,

the basal clade was formed by diploid I. trifida and outgroup

species, including diploid I. triloba, I. tenuissima, and tetraploid

I. tiliacea. The I. batatas 4x lineages, including the I. batatas 4x

and I. tabascana clade (hereafter referred to as I. batatas 4x)

and the I. batatas var. apiculata clade, resided at the base of a

large lineage composed of sweetpotato cultivars and a

monophyletic tetraploid lineage. The monophyletic tetraploid

lineage consisted of two monophyletic clades, including

tetraploid I. aequatoriensis from Ecuador and tetraploid hybrids

from Colombia (Colombia hybrid 4x). Sweetpotato cultivars/

landraces formed a sister monophyletic lineage to the

monophyletic tetraploid lineage. To infer reticulate phylogenetic

relationships between sweetpotato and its two closest wild

relatives (I. aequatoriensis and I. batatas 4x), we defined 5-kb

non-overlapping windows across the concatenated variationma-

trix for tree construction. We then counted the topologies of the

resulting 1092 trees. The four most frequent topologies (topology

1 to topology 4) accounted for 41.5% to 6.0% of the trees

(Figure 1B), indicating significant conflict among the windows.

Topology 1, accounting for 41.5% of the trees, was consistent

with the species trees derived from coalescence-based and

concatenation methods (Figure 1B). However, the second most

prevalent topology (topology 2), accounted for 40.7% of the

trees, only marginally less than topology 1. Topology 2

showed that sweetpotato and I. batatas 4x were sister

clades, with I. aequatoriensis positioned at the base of

their clades (Figure 1B). The poorly resolved topologies

(Figure 1C) highlighted reticulation history during sweetpotato

formation and suggested that I. aequatoriensis and I. batatas 4x

were likely involved in the allopolyploid reticulation.

Both principal-component analysis (PCA) and uniform

manifold approximation and projection (UMAP) analyses clus-

tered all accessions into six major groups: outgroup, I. trifida,
with the geographic location on the map for each accession. Accessions lack

Muñoz-Rodrı́guez et al. (2022) are labeled as ‘‘ox’’ at the end of the accessio

(B) The fourmost common topologies acrosswindows. The value in the top left

I. trifida; Iba4x, the I. batatas 4x group; Iae, I. aequatoriensis; Sp, sweetpotato

(C) Consensus cladogram showing the poorly resolved relationship of sweetp

(D) Principal-component analysis (PCA) of sweetpotato and its relatives. The p

are illustrated on the axes.

(E) Uniform manifold approximation and projection (UMAP) using the first thre

(F) Population structure analysis of sweetpotato and its close wild relatives fo
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I. aequatoriensis, Colombia hybrid 4x, I. batatas 4x group

(including I. batatas 4x, I. batatas var. apiculata, and

I. tabascana), and sweetpotato (Figure 1D and 1E;

Supplemental Figure 7A, 7B, 7D, and 7E). These results are

consistent with the phylogenetic clades of sweetpotato and its

wild relatives. Admixture-based analysis achieved the lowest

cross-validation error when K = 3 (Supplemental Figure 8B) and

delineated three populations: 1) I. trifida and the I. batatas 4x

group, 2) I. aequatoriensis, and 3) sweetpotato (Supplemental

Figure 8A). When K = 2, sweetpotato merged into the

population of I. trifida and the I. batatas 4x group, whereas

I. aequatoriensis remained isolated (Supplemental Figure 8A).

These results demonstrate a close relationship among I. trifida,

the I. batatas 4x group, and sweetpotato while indicating a

relatively distant relationship between I. aequatoriensis and

sweetpotato. However, when K = 5, admixture-based analysis re-

vealed a fine population structure that was consistent with the

phylogenetic, PCA, and UMAP analyses (Figure 1F and

Supplemental Figure 8A). The detailed classification of all

samples is provided in Supplemental Table 1.

There are two speculations regarding the relationship between

the I. batatas 4x group and sweetpotato. The first considers the

I. batatas 4x group to be the tetraploid progenitor of sweetpotato

(Yan et al., 2021), whereas the second treats the I. batatas 4x

group as hybrid offspring of crosses between sweetpotato and

I. trifida (Muñoz-Rodrı́guez et al., 2022). Therefore, it is

necessary to establish an effective standard to distinguish the

tetraploid progenitor and hybrid offspring using real hybrids or

simulated data (Yan et al., 2022). We simulated 3 tetraploid

hybrids of I. trifida and sweetpotato by randomly sampling

reads from the closest known accession of I. trifida (CIP698014)

related to sweetpotato, as well as from three sweetpotato

cultivars, at a ratio of 1:3. We then integrated these sampled

reads for phylogenetic and clustering analyses. All analyses

revealed that the simulated tetraploid hybrids consistently

grouped within the sweetpotato clade or cluster in all

analyses and were distinctly separated from other wild

tetraploid relatives, including the I. batatas 4x group (Figure 1A,

1D, and 1E). This suggests that the I. batatas 4x group is

unlikely to comprise hybrids derived from I. trifida and

sweetpotato.

Some wild hybrids (Colombia hybrid 4x) and artificial hybrids (In-

ternational Potato Center [CIP] hybrid 4x) were identified or

confirmed by PCA, UMAP, and admixture-based analysis.

Colombia hybrid 4x lay in the middle of I. trifida, the I. batatas

4x group, and I. aequatoriensis (Figure 1D and 1E), and the

population structure also supports the scenario in which

Colombia hybrid 4x is likely a hybrid originating from I. trifida,

the I. batatas 4x group, or I. aequatoriensis (Figure 1F). CIP
ing geographic data are not linked to the map. The same accessions from

n name.

corner is the percentage of all 5-kbwindows that recover that topology. Itr,

.

otato and its two closest wild relatives.

roportions of variance explained by principal component 1 (PC1) and PC2

e PCs.

r K = 5.



The origin and domestication of sweetpotato Molecular Plant

Please cite this article in press as: Yan et al., Haplotype-based phylogenetic analysis and population genomics uncover the origin and domestication of
sweetpotato, Molecular Plant (2024), https://doi.org/10.1016/j.molp.2023.12.019
hybrid 4x is an artificial hybrid between tetraploid relatives that

were crossed and recorded by the CIP. Individuals from the

I. batatas 4x group and I. aequatoriensis are involved in the

pedigrees of CIP hybrid 4x accessions, and their genetic

backgrounds are described in the Supplementary Note. The

admixture-based analysis confirmed their hybrid origins; individ-

uals within CIP hybrid 4x exhibited a genetic blend of both the

I. batatas 4x group and I. aequatoriensis (Figure 1F).

Horizontally transferred IbT-DNAs reveal two
progenitors of sweetpotato

Given that the genomes of nearly all sweetpotato cultivars/land-

races contain horizontally transferred IbT-DNA1 and/or IbT-

DNA2 sequences from Agrobacterium spp. (Kyndt et al., 2015;

Quispe-Huamanquispe et al., 2019), it is very likely that these

IbT-DNAs were inherited from the progenitors of sweetpotato.

Therefore, IbT-DNAs may serve as natural genetic markers for

tracing the origins of sweetpotato (Quispe-Huamanquispe

et al., 2019). In this study, I. tenuissima was the only diploid

species that contained IbT-DNA1, but its IbT-DNA1 sequence

diverged significantly from that of sweetpotato (Figure 2A;

Supplemental Table 1). Among the tetraploid relatives,

six accessions of the I. batatas 4x group and three

hybrid accessions (CIP695141, CIP695150B, and CIP403270)

possessed IbT-DNA1 (Figure 2A; Supplemental Table 1).

Among these, the non-hybrid wild relative with sweetpotato-like

IbT-DNA1 sequences was found only in the I. batatas 4x group

(Figure 2A). Consequently, the progenitor that passed on IbT-

DNA1 to sweetpotato is likely to be found among the I. batatas

4x group. Interestingly, IbT-DNA1 sequences of several

accessions from the I. batatas 4x group were partially covered

with sequencing reads (Figure 2A), suggesting that these

accessions gradually lost the IbT-DNA1 sequence. This

explains why the other accessions in the I. batatas 4x group

exhibit a closer affinity to sweetpotato but lack the IbT-DNA1

insertion.

I. trifida has been reported previously as the diploid progenitor of

sweetpotato. After screening 37 accessions of I. trifida, we iden-

tified six positive accessions for IbT-DNA2 (Supplemental

Table 1; Supplemental Figure 9). Nevertheless, IbT-DNA2

sequences from all six positive accessions formed a sister

lineage to those of sweetpotato and its tetraploid wild relatives

(Figure 2B and Supplemental Figure 9), indicating that these

sequences in I. trifida are genetically distant from those of

sweetpotato. Among the tetraploid wild relatives, nearly all

accessions of I. aequatoriensis, along with three artificial hybrid

accessions (CIP695141, CIP695141B, and CIP695150B),

contain the IbT-DNA2 insertion (Figure 2B; Supplemental

Table 1) and align within the same lineage as sweetpotato

(Figure 2B; Supplemental Figure 9). Therefore, I. aequatoriensis,

as the only non-hybrid wild relative with sweetpotato-like IbT-

DNA2, is likely related to the progenitor that passed on IbT-

DNA2 to sweetpotato.

Subgenome origins revealed by HPA

Relationships between sweetpotato and its potential progenitors

are informative for determining which subgenome was contrib-

uted by each progenitor. Considering the dosage effect, the pro-

genitor that contributed four copies of the B2 subgenome (tetra-
M

ploid progenitor) is genetically closer to sweetpotato than the

other progenitor that contributed two copies of the B1 subge-

nome (diploid progenitor). The I. batatas 4x group shows a closer

relationship to sweetpotato than I. aequatoriensis in the PCA

(specifically PC1 vs. PC2), UMAP plots (Figure 1D and 1E), and

genome-wide nucleotide diversity analysis (Supplemental

Figures 10 and 11). Nevertheless, these analyses regard both

the hexaploid sweetpotato and its tetraploid relatives as

diploids, thereby artificially reducing the allelic variations among

polyploids.

To determine the precise relationship between sweetpotato and

its progenitors, we developed an HPA pipeline that uses homoel-

ogous haplotypes from polyploids for high-throughput phyloge-

netic analyses (Supplemental Figure 12). We initially mapped

the sequence reads of sweetpotato cultivars and tetraploid wild

relatives to the sweetpotato genome and independently

reconstructed haplotypes based on the genomic variations

(Supplemental Figure 12A). Taking into account both

phylogenetic lineages and geographic locations, we selected

three representative cultivars (Figure 1A and Supplemental

Figures 5 and 6): Huameyano, NK259L, and Yuzi7. We

identified 439 555–760 769 haplotype blocks in the three

sweetpotato cultivars (Supplemental Table 2; Supplemental

Figure 13B) and 380 895–1 007 206 haplotype blocks in the 38

tetraploid accessions (Supplemental Table 3; Supplemental

Figure 13A). We recorded the start and end position for each

haplotype block to the genome. Next, we extracted the

syntenic haplotype blocks shared between each sweetpotato

cultivar and each tetraploid accession. By comparing the start

and end positions, we extracted overlapping regions of

haplotype blocks between sweetpotato and the tetraploid

accession as syntenic haplotype blocks (Supplemental

Figure 12B). Through this process, we identified 606 246–

1 154 274 syntenic haplotype blocks (Supplemental Table 4;

Supplemental Figure 14). Finally, we removed 1) redundant

syntenic haplotype blocks that had overlapping regions with

other blocks and 2) blocks that consisted of short sequences

(less than 20 bp). As a result, we extracted 412 632–866 522

syntenic haplotype blocks, comprising 28.2%–41.7% of the

sweetpotato genome (Supplemental Table 5; Supplemental

Figure 15).

We used the syntenic haplotype blocks between each sweetpo-

tato cultivar and each tetraploid accession for independent

phylogenetic reconstructions (Supplemental Figure 12C). The

phylogenetic trees were generated by two methods:

unweighted pair-group method with arithmetic mean (UPGMA)

and maximum likelihood (ML). We calculated the monophyletic

ratios, the Nsp–Nwr distances, and thenucleotide diversity (PI)

indices to measure the relationship between the investigated

tetraploid accession and the representative hexaploid sweetpo-

tato (Supplemental Figure 12D). Both the monophyletic ratio

and the Nsp–Nwr distance are calculated on the basis of tree to-

pology. The monophyletic ratio is defined as the proportion of

trees in which sweetpotato haplotypes form a monophyletic

clade (Supplemental Figure 12D). The Nsp–Nwr distance is

defined as the tree branch length between the most recent com-

mon ancestor (MCRA) node of sweetpotato haplotypes (Nsp) and

the MCRA node of the tetraploid accession (Nwr) (Supplemental

Figure 12D). When either sweetpotato or the wild relative is not
olecular Plant 17, 1–20, February 5 2024 ª 2024 The Author. 5
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Figure 2. Phylogeny and structure of IbT-DNAs from sweetpotato and its wild relatives.
(A) ML tree of IbT-DNA1 based on variants from positive accessions. Nodes supported by bootstrap values greater than 70% are noted. Structural

diagrams of IbT-DNA1 are shown on the right. Regions with no mapped reads are likely to be deletions and are colored in light gray. Indels are also color

coded.

(B) ML tree of IbT-DNA2 based on sequence variants from positive accessions. Nodes with bootstrap values greater than 70% are noted. Structural

diagrams of IbT-DNA2 in positive accessions are shown on the right. Regions with nomapped reads are likely to be deletions and are colored in light gray.

Indels are also color coded.
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Figure 3. Relationships between sweetpotato cultivars and tetraploid accessions as revealed by haplotype-based phylogenetic
analysis (HPA).
(A–C) Boxplots of the monophyletic ratio, the Nsp–Nwr distance based on two tree-building methods, and the PI index of 15 chromosomes among 38

tetraploid accessions: (A) results for cultivar Huarmeyano, (B) results for cultivar NK259L, and (C) results for cultivar Yuzi7. Monophyletic ratio, the

(legend continued on next page)
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monophyletic, the Nsp–Nwr distance becomes zero. If the wild

relative is sufficiently close to sweetpotato, then neither

sweetpotato nor its wild relative is likely to be monophyletic,

resulting in a low monophyletic ratio and a short Nsp–Nwr dis-

tance. While, the PI index is a coefficient that quantifies the

difference in nucleotide diversity between the haplotypes from

sweetpotato and the tetraploid accession (Supplemental

Figure 12D). If the wild relative shares a close genetic affinity

with sweetpotato, the difference in nucleotide diversities

between sweetpotato and the wild relative is small, leading to a

low PI index. To enhance accuracy, we limited our analysis to

trees that consistently received the same monophyletic

judgment from both tree-building methods, using them to

compute the monophyletic ratio, Nsp–Nwr distance, and PI in-

dex. Of all syntenic haplotype blocks examined, the 6:4 dataset

(composed of six haplotypes of sweetpotato and four haplotypes

of tetraploid accessions) produced the most robust results,

because the results of the 6:4 dataset were consistent across

all three indices using the three sweetpotato cultivars

(Figure 3A–3C; Supplemental Figures 16–30).

HPA provided a better resolution and relatively consistent results

in resolving the relationship between sweetpotato and its tetra-

ploid relatives. The strong correlations betweenmonophyletic ra-

tio and Nsp–Nwr distance, as well as betweenmonophyletic ratio

and PI index (Figure 3D and 3E), demonstrated that the three

indices revealed a consistent relationship. All three HPA indices

showed that, among the non-hybrid tetraploid relatives, the

I. batatas 4x group contained the closest relatives of sweetpo-

tato, and I. aequatoriensiswas the most distant tetraploid relative

(Figures 3A–3C). HPA also indicated that I. batatas 4x was more

closely related to sweetpotato than I. batatas var. apiculata

(Figure 3A–3C). Combined with the evidence from IbT-DNA1,

these results indicate that I. batatas 4x is most likely

the tetraploid progenitor that contributed the four B2

subgenomes to sweetpotato. As revealed by IbT-DNA2

evidence, I. aequatoriensis is closely related to another

progenitor species. Because I. aequatoriensis has a relatively

distant relationship to sweetpotato compared with I. batatas 4x,

it is most likely related to the diploid progenitor, which

contributed the two B1 subgenomes to sweetpotato. Because

I. aequatoriensis is an autotetraploid species with low

heterozygosity (Muñoz-Rodrı́guez et al., 2022), it probably

formed through a whole-genome duplication of its diploid form.

Therefore, its ancient diploid form is likely the diploid progenitor

of sweetpotato.

The CIP hybrid 4x exhibited the closest genetic affinity to sweet-

potato (Figure 3A–3C). Samples of CIP hybrid 4x are artificial

hybrids derived from tetraploid relatives, incorporating the I.

batatas 4x group and I. aequatoriensis in their pedigrees

(Supplemental Note). Their close genetic relationship to

sweetpotato suggests that these hybridizations likely mimicked

the natural origin of sweetpotato, except for the differing ploidy

levels.
proportion of trees in which sweetpotato haplotypes form a monophyletic cla

common ancestor (MCRA) node of sweetpotato haplotypes (Nsp) and the M

calculates the difference between haplotype nucleotide diversity of sweetpot

(D) Dot plot between the monophyletic ratio and the Nsp–Nwr distances of th

(E) Dot plot between the monophyletic ratio and the PI index.
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Chloroplast genome analyses confirm the identification
of the two sweetpotato progenitors

Consistent with previous reports (Muñoz-Rodrı́guez et al., 2018,

2022), the chloroplast haplotypes of sweetpotato were divided

into two lineages, lineage 1 and lineage 2 (Figure 4;

Supplemental Figure 31), and the chloroplast haplotypes

of I. trifida were distantly related to the two lineages of

sweetpotato. However, I. batatas 4x was nested in lineage 2 of

sweetpotato, and the closest individuals were five accessions

of I. batatas 4x (ECAL_2156(1)_1, ECAL_2156(10)_2, ECAL_

2192_2, ECAL_2262_1, and ECAL_2293(2)_1) (Figure 4;

Supplemental Figure 31). Other accessions of I. batatas 4x,

I. batatas var. apiculata, and Colombia hybrid 4x also belong to

lineage 2, but they showed a relatively distant relationship to

sweetpotato haplotypes (Figure 4; Supplemental Figure 31).

The closest relationship was observed between the chloroplast

genomes of I. batatas 4x and sweetpotato, providing further

evidence that I. batatas 4x is the probable progenitor of

sweetpotato. In addition, I. aequatoriensis was the only non-

hybrid species nested within lineage 1 of sweetpotato haplotypes

(Figure 4; Supplemental Figure 31), which suggests that

I. aequatoriensis resembles the progenitor of sweetpotato that

contributed the lineage 1 type of chloroplast genome to

sweetpotato. Consequently, it is highly probable that the two

chloroplast haplotype lineages of sweetpotato are directly

inherited from its two progenitors. It is also probable that the

two progenitors crossed reciprocally and thus passed on the

two chloroplast genome lineages and the identical nuclear

genome conformation to sweetpotato (Figure 5A). The

haplotypes of I. trifida exhibited greater genetic distance

from sweetpotato than did the two progenitors (Figure 4;

Supplemental Figure 31), indicating that extant I. trifida may not

be the diploid progenitor of sweetpotato.
Gene conversion between sweetpotato subgenomes

Gene conversion in polyploids refers to sequence exchanges be-

tween homoelogous genes from different subgenomes in which

one progenitor allele overwrites another (Wang and Paterson,

2011; Cenci et al., 2012; Chen et al., 2016). The sweetpotato

genome comprises two B1 and four B2 subgenomes

(B1B1B2B2B2B2). Subgenomes B1B1 originated from the diploid

progenitor, whereas subgenomes B2B2B2B2 were contributed

by the tetraploid progenitor (Shiotani and Kawase, 1987). In the

absence of any conversion events, each syntenic haplotype

block between sweetpotato and I. batatas 4x should have two

copies of the B1 subgenome from sweetpotato, four copies of

the B2 subgenome from sweetpotato, and four copies of the B2

subgenome from I. batatas 4x (Figure 5C). If genes converted

between the B1 and B2 subgenomes, both the copy numbers of

the subgenomes and the tree topology are expected to deviate

from the standard 2:8 ratio between B1 and B2 in hexaploid

sweetpotato and I. batatas 4x (Figure 5D and 5E). We therefore

identified gene conversion events by examining tree topology,

in the Supplemental Note. To detect potential gene conversion
de; Nsp–Nwr distances, the tree branch length between the most recent

CRA node of the tetraploid accession (Nwr); PI index, a coefficient that

ato and that of the tetraploid accession.

e ML tree.



Figure 4. Phylogenetic network of chloroplast genomes.
The phylogenetic network of chloroplast genomes from sweetpotato and its wild relatives was inferred using the TSC network. Circle size is proportional

to the frequency of the corresponding haplotype across all populations. The number of short lines between two haplotypes represents mutational steps.

Filled black circles indicate either unsampled haplotypes or extinct ancestral haplotypes.
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events, we only analyzed syntenic haplotype blocks located in

gene regions, which included six haplotypes of sweetpotato

and four haplotypes of I. batatas 4x. For the representative

sweetpotato cultivars, we selected one cultivar from

each lineage in the sweetpotato phylogeny (Figure 1A and

Supplemental Figures 5 and 6): Huameyano, NASPOT5/58,

NK259L, Y601, and Yuzi7. The closest I. batatas 4x accession

(ECAL_2262_1), which resembles the tetraploid progenitor, was

selected as a reference. The analysis pipeline is illustrated in

Supplemental Figure 32.

We ultimately obtained 13 535–27 867 homologous haplotype

blocks of sweetpotato cultivars and the closest I. batatas 4x

accession, which we then used to identify gene conversion

events between subgenomes (Supplemental Table 6). Using the

5 sweetpotato cultivars as references, 47.1%–48.3% of the

gene regions in sweetpotato exhibited signs of subgenome

conversion (Figure 5B; Supplemental Table 6). Our findings

indicated that gene conversions from B1 to B2 subgenomes

(38.1%–39.3%) occurred much more frequently than those

from B2 to B1 (8.9%–9.6%) (Figure 5B; Supplemental Table 6).

This result aligns with expectations, because gene conversion

is known to be a copy number–dependent process (Khakhlova

and Bock, 2006).
Genomic signatures of selective sweeps in sweetpotato

We compared the genetic diversity between sweetpotato and its

two progenitors by estimating the genome-wide nucleotide diver-

sity (p) across a sweetpotato population consisting of 23 cultivars

and landraces as well as the populations of its two progenitors

(I. aequatoriensis and the I. batatas 4x group) in sliding windows.
M

Sweetpotato exhibited higher genome-wide nucleotide diversity

than its diploid progenitor, a trend evident across all chromo-

somes (Supplemental Figure 10). The average nucleotide

diversity of sweetpotato was also higher than that of the diploid

progenitor (psweetpotato = 0.0035, pdiploid progenitor = 0.0026).

However, the genome-wide nucleotide diversity of sweetpotato

was remarkably similar to that of its tetraploid progenitor

across all chromosomes (Supplemental Figure 11), with only a

slightly higher average nucleotide diversity (Supplemental

Figure 10; ptetraploid progenitor = 0.0034).

We used three metrics to detect potential signatures of selection

during sweetpotato domestication: p ratio (p wild relative/p

sweetpotato), population differentiation (FST), and cross-population

composite likelihood ratio (XP-CLR). We calculated the three

metrics using 100-kb sliding windows with 10-kb steps. Regions

ranking in the top 1% for p ratio, FST, and XP-CLR scores were

identified as selective sweep regions. In total, we identified 466

potential selective sweep regions between sweetpotato and its

two progenitor populations. These regions of potential selective

sweeps were probably linked to natural selection and

domestication.

The selective sweep regions between sweetpotato and its diploid

progenitor encompass 1014, 1020, and 2921 genes, as identified

by the three respective metrics (Supplemental Figure 33A;

Supplemental Table 7). These genes are primarily involved

in various biological pathways, including cell surface

receptor signaling, symbiotic interaction, regulation of amino

acid transport, glutathione peroxidase activity, triterpenoid

biosynthetic process, ethylene-activated signaling pathway,

mitotic cell cycle, plant-type hypersensitive response, enzyme
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Figure 5. Hypothesized origin of sweetpotato and gene conversions between subgenomes.
(A)Hypothesized origin of sweetpotato. The diploid progenitor (likely the diploid form of I. aequatoriensis) contributed the B1 subgenome, IbT-DNA2, and

the lineage 1 type of chloroplast genome to sweetpotato. The tetraploid progenitor of sweetpotato, identified as I. batatas 4x, probably originated from

genome duplication in ancient I. trifida. I. batatas 4x contributed the B2 subgenome, IbT-DNA1, and the lineage 2 type of chloroplast genome. Sweet-

potato is derived from reciprocal crosses between the diploid and tetraploid progenitors, followed by a subsequent whole-genome duplication (WGD).

(B) Gene conversion ratios in five hexaploid sweetpotato cultivars/landraces using the closest known non-hybrid accession (ECAL_2262_1) as a

reference to resemble the tetraploid progenitor. B1–B2, gene conversion events from the B1 to the B2 subgenome; B2–B1, conversion events from theB2 to

the B1 subgenome; Others, other scenarios, including no conversion and unresolved scenarios.

(C–E) Examples of tree topologies under the scenarios of no conversion (C), B1 to B2 gene conversion (D), and B2 to B1 gene conversion (E). The B1

subgenome is shown in green and the B2 subgenome in blue. SP, sweetpotato. WR, wild relative (tetraploid progenitor).
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inhibitor activity, etc. (Supplemental Table 8). Selection of

candidate domestication genes was based on their ranking in

the top 1% of least two metrics and on consideration of their

biological functions and expression levels (Figure 6A–6C;

Supplemental Table 9). Among these candidates, genes

encoding two basic helix loop helix (bHLH) transcription

factors, heat shock cognate protein 70-1 (HSP70-1), and auxin

response factor 2A-like (ARF2) are known to be involved in initia-

tion and/or development of storage roots (Cao et al., 2012; Ravi

et al., 2014, 2017). Genes encoding two lateral organ

boundaries (LOB) domain-containing proteins (LBD1 and

LBD33), U-box domain-containing protein 13-like (U-box13),

cysteine-rich RECEPTOR-like protein kinase 2 (CRK2), 14-3-3

protein (14-3-3), NAC (NAM, ATAF1,2, CUC2)

transcription factor 56-like (NAC056), and transmembrane pro-

tein 18 (Tmem18) are functionally related to root development

in Arabidopsis and other plants (Berckmans et al., 2011;

Mayfield et al., 2012; Dou et al., 2016; Hunter et al., 2019;

Yamauchi et al., 2019; Kim et al., 2021; Xu et al., 2022). Aside

from LBD1 and LBD33, which were predominantly expressed in
10 Molecular Plant 17, 1–20, February 5 2024 ª 2024 The Author.
the stem, all other genes were highly expressed in the root

(Supplemental Figure 34A). Their expression also tended to

increase with root development, suggesting that they may play

significant roles in storage root development in sweetpotato.

Potassium is crucial for yield of sweetpotato storage roots

because it influences photosynthesis, translocation of nutrients,

and initiation and thickening of storage roots (George et al.,

2002). We identified a gene, integrin-linked protein kinase 1-like

(ILK1), that promotes potassium uptake and is highly expressed

at the early stage of storage root development (Supplemental

Figure 34A). We identified two well-known plant defense genes,

specifically N, which encodes tobacco mosaic virus (TMV) resis-

tance protein N-like, and CAMTA, which encodes a calmodulin-

binding transcription activator protein. In addition, we detected

sporamin B, a major storage protein in sweetpotato storage roots

that plays significant roles in stress tolerance (Senthilkumar and

Yeh, 2012). Maintaining genomic stability is particularly

challenging in polyploids owing to the complex meiotic

behavior of chromosome sets and the complexity of

recombination events (Comai, 2005; Hollister, 2015). We
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Figure 6. Profiling of selective sweeps during sweetpotato speciation and domestication.
(A–C) Selective sweep regions identified between sweetpotato and the tetraploid form of the diploid progenitor (I. aequatoriensis). Selective sweep

regions identified by p ratio (p diploid progenitor/p sweetpotato) (A), population differentiation (FST) (B), and cross-population composite likelihood ratio

(legend continued on next page)
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identified six genes essential for accurate chromosome

segregation and maintenance of genomic stability: regulator of

chromosome condensation family protein (RCC1), condensin

complex subunit 1 (NCAPD2), AUGMIN subunit 1 (AUG1), spindle

and kinetochore-associated protein 1 (SKA1), poor homologous

synapsis 1 (PHS1), and structural maintenance of chromosomes

protein (SMC).

The selective sweep regions between sweetpotato and its tetra-

ploid progenitor contained 928, 945, and 3082 genes, as identi-

fied by the three respective metrics (Supplemental Figure 33B;

Supplemental Table 10). These genes are enriched in various

biological pathways, such as strictosidine synthase activity,

protein autophosphorylation, endonuclease activity, terpene

synthase activity, root morphogenesis, peptidase inhibitor

activity, plant-type hypersensitive response, mitotic G2/M transi-

tion checkpoint, etc (Supplemental Table 11). Candidate

domestication genes were identified as described above

(Figure 6D–6F; Supplemental Table 12). Among these

candidatesthere were five genes with significant roles in the

initiation and/or development of storage roots: DNA binding

with one finger (dof) zinc-finger protein DOF4.6-like (DOF4.6),

auxin response factor 2A-like (ARF2), an ethylene-responsive

transcription factor (ERF), a bHLH93-like transcription factor

(bHLH93), and expansin-like B1 (EXPB1) (Tanaka et al., 2009;

Noh et al., 2013; Ravi et al., 2014, 2017). Six genes known to

participate in Arabidopsis root development were also

identified, including cysteine-rich RECEPTOR-like protein kinase

2 (CRK2, topless-related protein-like (TPL3 and TPL4), MYB-like

transcription factor HHO3-like (HHO3), DCN1-like protein 5

(AAR5), and LOB domain-containing protein 1-like (LBD1)

(Biswas et al., 2007; Espinosa-Ruiz et al., 2017; Hunter et al.,

2019; Yamauchi et al., 2019; Li et al., 2021). With the exception

of LBD1, these genes were predominantly expressed in the

roots, and their expression levels increased with root

development (Supplemental Figure 34B). Pectin is important for

cell wall properties and storage root development (Guillemin

et al., 2005; Dong et al., 2020). We identified two genes,

pectinesterase 1-like (PME1) and probable pectate lyase 20

(PMR), that alter the composition of the plant cell wall through

pectin modification. In addition, we identified the sugar trans-

porter SWEET1, which is known as a bidirectional uniporter/

facilitator with central roles in phloem loading of sugar for long-

distance transport (Ji et al., 2022). Five plant defense genes

were also identified: hypersensitive response (HR)-like lesion-

inducing protein-like protein (HRLI), putative late blight resistance

protein (R1B-16), aspartyl protease (APCB), TMV resistance pro-

tein N-like, and sporamin B. We identified three genes essential

for maintenance of genomic stability: inner centromere protein-

like (INCENP), spindle and kinetochore-associated protein 1

(SKA1), and minichromosome instability 12-like protein (mis12).

We detected strong selective sweep signals for sporamin genes

between sweetpotato and its two potential progenitors using all

three metrics. Two tandem repeats of sporamin genes with 18
(XP-CLR) (C). Dashed lines indicate regions that ranked in the top 1% for p r

candidate domestication genes. sp, sweetpotato; dp, diploid progenitor; LG,

(D–F) Selective sweep regions identified between sweetpotato and the tetrapl

byp ratio (p tetraploid progenitor/p sweetpotato) (D), FST (E), and XP-CLR (F). Dashed

values. Gray vertical bars highlight the positions of candidate domestication
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and 17 genes, respectively, are present on LG11 (linkage

group 11, corresponding to chromosome 11) (Figure 7A). We

identified selective sweeps in the second tandem repeat of

sporamin genes between sweetpotato and its two potential

progenitors (Figures 6 and 7B). Sporamin B is a major storage

protein in sweetpotato storage roots and plays significant roles

in plant defense (Senthilkumar and Yeh, 2012). Downregulation

of sporamin genes in RNAi lines led to a decrease in storage

root yield (Figure 7C–7E). These results suggest that sporamin

genes not only have roles in plant defense but also are crucial

for storage root formation. These genes were likely selected

during the domestication and improvement of sweetpotato.

DISCUSSION

Understanding the genetic origins of crops is crucial for

breeding and genetic engineering. It is particularly important

for genetic improvement and development of genetic

resource conservation strategies that involve wild relatives. The

genetic origin of sweetpotato has been a subject of ongoing

debate (Magoon et al., 1970; Ukoskit and Thompson, 1997;

Rajapakse et al., 2004; Srisuwan et al., 2006; Gao et al., 2011,

2020; Muñoz-Rodrı́guez et al., 2018, 2022; Yan et al., 2021),

primarily owing to its highly heterozygous hexaploid genome

(Yang et al., 2017; Wu et al., 2018), the limitations of analyses

that use genome consensus sequences, and the limited

inclusion of wild relatives with close genetic affinity. The

subgenomes of sweetpotato exhibit high similarity, largely due

to the close genetic relationship between its diploid and

tetraploid progenitor species (Magoon et al., 1970). As a

result, conventional strategies for investigating the origins of

allopolyploids, as applied to crops like rapeseed (Brassica

napus), bread wheat (Triticum aestivum), Echinochloa spp., and

polyploid bamboo (Bambusa spp.) (An et al., 2019; Guo et al.,

2019; Lu et al., 2019; Ye et al., 2020; Zhou et al., 2020), are not

suitable for sweetpotato. To address these challenges, we

incorporated all currently available close wild relatives of

sweetpotato and used a variety of genetic markers, such

as IbT-DNA insertions, nuclear variations, and chloroplast

genotypes. In addition, we developed an HPA pipeline that

takes full advantage of homologous variation while maintaining

the genuine nucleotide diversity of the polyploid species. This

enabled us to accurately delineate the relationships between

sweetpotato and its tetraploid relatives.

On the basis of the findings presented here, we propose a hy-

pothesis for the origin of sweetpotato (Figure 5A). This

hypothesis accounts for the origins of the two subgenomes, the

IbT-DNA insertions, and the two chloroplast genome lineages

within cultivated sweetpotato. The diploid progenitor (closely

related to I. aequatoriensis) contributed the B1 subgenome,

IbT-DNA2, and the lineage 1 type of chloroplast genome to

sweetpotato. The tetraploid progenitor of sweetpotato,

identified as I. batatas 4x and likely derived from duplication of

an ancient I. trifida, contributed the B2 subgenome, IbT-DNA1,
atio, FST, and XP-CLR values. Gray vertical bars highlight the positions of

linkage group, corresponding to chromosome.

oid progenitor (the I. batatas 4x group). Selective sweep regions identified

lines indicate regions that ranked in the top 1% forp ratio, FST, and XP-CLR

genes.
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Figure 7. Selective sweeps of sporamin genes.
(A) Population differentiation (FST) betweenwild relatives and sweetpotato cultivars is illustrated on the right of the LG11 (chromosome 11) karyotype. The

colors on the karyotype represent the gene density along LG11. Two tandem repeats of sporamin are located on one end of LG11; each gene is labeled

with a purple dot and linked to its position on the chromosome.(B)p ratio (p wild relative/p sweetpotato), FST, and XP-CLR between sweetpotato and tetraploid

populations for sporamin-containing regions. Dashed lines indicate the top 1%of values for thep ratio, FST, and XP-CLR values. dp, diploid progenitor; tp,

tetraploid progenitor.(C) Root phenotypes of the wild type and two RNAi lines of the sporamin gene in sweetpotato.(D) Relative sporaminmRNA levels in

roots (2-mm diameter) of the wild type and sporamin RNAi lines.(E) Root weights of the wild type and sporamin RNAi lines.
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and the lineage 2 type of chloroplast genome. Hexaploid

sweetpotato is probably derived from reciprocal crosses

between the diploid and tetraploid progenitors, followed by a
M

whole-genome duplication. Given that the two identified

progenitors and their closest relatives are distributed in Central

America, including southern Mexico, Guatemala, Ecuador, and
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Venezuela, sweetpotato may have originated from Central

America. The fact that sweetpotato diversity is highest in

Central America provides further evidence that this region is

likely to be the center of origin for the crop (Huang and Sun,

2000; Zhang et al., 2000). Regrettably, the definitive diploid

form of I. aequatoriensis has yet to be identified. Because the

IbT-DNA2 sequence has proven to be an effective marker for

identifying the diploid progenitor of sweetpotato, it will be

necessary to conduct a more extensive and comprehensive

examination of sweetpotato-type IbT-DNA2 in the diploid species

of Central America to ultimately discover the diploid progenitor of

sweetpotato. Quispe-Huamanquispe et al. (2019) demonstrated

that screening a single gene (ORF13) coupled with phylogenetic

analysis was sufficient for preliminary identification of the

diploid sweetpotato progenitor.

For a long time, extant I. trifida has been considered

either the diploid progenitor or the sole progenitor of

sweetpotato because it is the closest diploid species to sweetpo-

tato, as revealed by DNA sequence and cytogenetic

evidence (Shiotani, 1988; Shiotani and Kawase, 1989; Roullier

et al., 2013; Muñoz-Rodrı́guez et al., 2018). However, when

closer wild relatives are incorporated in the analyses, all

available data suggest that extant I. trifida is unlikely to be

the diploid or sole progenitor of sweetpotato. First,

extant accessions of I. trifida show a more distant genetic

relationship to sweetpotato compared with I. batatas 4x and

I. aequatoriensis, as revealed in this study and previous studies

using nuclear genome variations (Yan et al., 2021; Muñoz-

Rodrı́guez et al., 2022). Second, the chloroplast genomes of

I. trifida form an independent lineage clearly distinct from the

two existing lineages of sweetpotato. Therefore, previous

hypotheses that considered extant I. trifida the diploid

progenitor or sole progenitor failed to account for the formation

of the two distinct lineages in sweetpotato. The first hypothesis

suggests that asymmetric hybridization between diploid I. trifida

and an original hexaploid sweetpotato led to chloroplast

capture from I. trifida (Muñoz-Rodrı́guez et al., 2018, 2022).

However, this explanation overlooks the fact that hybridization

between a diploid and a hexaploid results in tetraploids rather

than hexaploids in most instances (Orjeda et al., 1991). The

second hypothesis suggests that the hybridization between

sweetpotato and I. trifida produced a new allotetraploid entity

that subsequently hybridized with I. trifida to form a new

hexaploid. The newly formed hexaploid then repeatedly back-

crossed with the original hexaploid I. batatas, thus progressively

losing the I. trifida component of its nuclear genome while main-

taining an I. trifida-like chloroplast (Muñoz-Rodrı́guez et al.,

2018). This explanation appears to be unlikely because it

requires two separate hybridization events to form a new

allotetraploid and repeated asymmetric hybridizations in a

specific direction. Therefore, the extant I. trifida is unlikely to

have served as the diploid or sole progenitor of sweetpotato.

Our study offers a more straightforward explanation for the

perplexing discrepancies between the genetic structures of the

nuclear and chloroplast genomes. During the formation of

sweetpotato, the two progenitors crossed reciprocally, thereby

passing on the two types of chloroplast genome to

sweetpotato. Meanwhile, the reciprocal crossing maintained

the identity of the nuclear genome in sweetpotato, because we

observed that nuclear genomes of sweetpotato cultivars
14 Molecular Plant 17, 1–20, February 5 2024 ª 2024 The Author.
formed a monophyletic clade throughout their evolution and

domestication. However, aside from reciprocal hybridization,

asexual chloroplast capture could also account for the

presence of two types of chloroplast genomes in sweetpotato.

In such scenarios, chloroplast capture would occur in the

absence of detectable nuclear introgression (Stegemann and

Bock, 2009; Stegemann et al., 2012).

Nearly half of the gene regions in sweetpotato show signs of con-

version between the subgenomes. As detected using HPA, B1 to

B2 conversion events were approximately three times more

frequent than B2 to B1 conversions (Figure 5B). Rampant gene

conversion and conversion biases have increased genome

complexity in sweetpotato and may indicate an important role

of gene conversion in sweetpotato genome evolution and

domestication. Subgenome-biased conversion has been re-

ported in various allopolyploid crops, including cotton, canola,

peanut, and strawberry (Paterson et al., 2012; Chalhoub et al.,

2014; Chen et al., 2016; Edger et al., 2019). Nonetheless, the

molecular mechanisms underlying such conversion bias remain

largely unexplored. For sweetpotato, the dosage effect (of the

tetraploid B2 genome versus the diploid B1 genome) could

account for the more prevalent conversion of B1 alleles to B2

alleles, given that gene conversion is a copy number–

dependent process (Khakhlova and Bock, 2006). However, the

currently phased haplotypes remain fragmented and short

(Supplemental Table 5; Supplemental Figure 35). To confirm the

gene conversion scenario, extended haplotype phasing using

nanopore or PacBio sequences or a fully phased genome

assembly will be necessary.

The domestication syndrome of vegetatively propagated field

crops includes the mode of reproduction, the yield of edible plant

parts, the time and ease of harvest, defense adaptations, and

plant architecture (Denham et al., 2020). Several of these

phenotypic traits are likely associated with domestication in

sweetpotato. Compared with those of its wild relatives, the

most remarkable feature of sweetpotato is its large edible

storage roots. The evolutionary history of the sweetpotato

storage root has remained unclear. Storage roots are found in

certain strains of I. trifida (Li et al., 2019) (Supplemental

Figure 1B; Supplemental Table 1). Significant enlargement of

fibrous roots has also been reported in both I. batatas 4x and

I. aequatoriensis (Dı́az et al., 1992; Muñoz-Rodrı́guez et al.,

2022), although either the tetraploid accessions included in this

study lack tuberous roots or the relevant data are missing

(Supplemental Figures 1–3; Supplemental Table 1). The original

root characteristics of primitive sweetpotato roots remain

unclear because sweetpotato originated during pre-human times

(Muñoz-Rodrı́guez et al., 2018). The wild hexaploid sweetpotato

(accession Y601) produces a slightly enlarged storage root

(Supplemental Figure 1F; Supplemental Table 1). All available

data indicate that both the progenitor species and the wild

hexaploid sweetpotato have the potential for storage root

formation. However, the typical edible storage roots of modern

cultivars are the result of domestication, having been selected

by early hunter-gatherers, farmers, and breeders. Thus, the

development of a starchy storage root has probably undergone

strong selective pressure during the human-led domestication

of sweetpotato (Liu, 2017), a claim supported by genomic

signatures. Most selective sweeps are functionally related to
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root development. We identified nine candidate domestication

genes (DOF4.6, two ARF2s, ERF, three bHLHs, EXPB1, and

HSP70-1) that are required for initiation and development of

storage roots in sweetpotato. We also identified 11 additional

candidate genes (two CRK2, TPL3, TPL4, HHO3, AAR5, LBD1,

LBD33, U-box13, NAC056, and Tmem18) that are known to

participate in root development of Arabidopsis and other plants

(Schiefelbein and Somerville, 1990; Pi et al., 2015; Ma and Li,

2018). These genes represent promising targets for future

functional validation studies and genetic improvement of

tuberous root crops.

Starch accumulation is another agronomically important trait that

was under selection pressure during domestication of sweetpo-

tato (Liu, 2017). Starch biosynthesis relies on sugars as its

essential substrates. Hence, sugar transport is critical for both

source–sink dynamics and starch accumulation in the storage

root. Our study identified SWEET1, a sugar transporter, as a

target of selection during sweetpotato domestication. SWEET1

likely functions as a bidirectional glucose transporter in sweetpo-

tato. Furthermore, both abiotic and biotic resistance have been

intensely selected during both human and natural selection (Liu,

2017), as reflected in enriched pathways within selected

genomic regions. The entire sweetpotato plant is edible,

attracting not only herbivorous insects but also pathogenic

viruses, fungi, and bacteria (Ogawa and Komada, 1984;

Jansson and Raman, 1991; Gutiérrez et al., 2003; Jang et al.,

2004). Therefore, plant defense is essential for both survival

and storage root yield in sweetpotato. In this regard, our study

identified nine well-known plant resistance genes (HRLI, R1B-

16, two sporamin Bs, threeN-likes,APCB, andCAMTA) that carry

signatures of selective sweeps.

The discovery of the two sweetpotato progenitors will accelerate

the development of better varieties involving the natural re-

sources of the two progenitor species. In addition, as information

on domestication-related genes and their genomic and subge-

nomic distribution continues to accumulate, new opportunities

will become available to improve sweetpotato by increasing

yields and developing tailor-made varieties. Clearly, a combina-

tion of applied and theoretical approaches (involving computa-

tional and systems biology–based models) will be required to

meet the challenges involved (Vaughan et al., 2007). The

insights into the genomics and domestication of sweetpotato

gained from this study will contribute to this goal and aid future

breeding and genetic engineering approaches for this important

staple crop.

METHODS

Plant materials

Because previous global-scale monographic studies of Ipomoea have re-

vealed the phylogenetic relationships among sweetpotato and its wild rel-

atives (Muñoz-Rodrı́guez et al., 2018, 2019; Wood et al., 2020), we

focused our sampling on the closest wild relatives previously identified

as progenitors of sweetpotato. Seven diploid wild relatives of

sweetpotato (including five accessions of I. trifida, one accession

of I. triloba, and one accession of I. sp.), 43 tetraploid wild relatives of

sweetpotato (four individuals of I. tiliacea, seven individuals of I. batatas

var. apiculata, eight individuals of I. batatas 4x, two individuals of

I. tabascana, 12 individuals of tetraploid I. aequatoriensis, and 10

individuals of Ipomoea hybrids), and 23 sweetpotato cultivars/landraces
M

were used for phylogenetic analyses of nuclear and chloroplast

genomes. Data for 12 accessions were downloaded from NCBI (Muñoz-

Rodrı́guez et al., 2022). For sweetpotato cultivars/landraces,

sequencing data from cultivars Taizhong6, Xushu18, Y601, Yuzi263,

and Yuzi7 were newly generated in this study. Other data for

sweetpotato cultivars/landraces were downloaded from NCBI, including

cultivars Tanzania and Beauregard and 16 cultivars in the Mwanga

diversity panel (Wu et al., 2018). Three tetraploid hybrids of I. trifida and

sweetpotato were simulated by randomly sampling reads from I. trifida

accession CIP698014 and three sweetpotato cultivars/landraces

(Xushu18, Y601, and Yuzi7) at a ratio of 1:3 using seqtk (v.1.3) (Shen

et al., 2016). Sampled reads were integrated between I. trifida and each

sweetpotato cultivar. In addition, we incorporated 27 accessions of

I. trifida with low-depth sequencing data (�13) specifically for the IbT-

DNA analyses. Detailed information on the plant materials is given in

Supplemental Table 1 and Supplemental Figures 1–4. The process of

generating transgenic sweetpotato is described in the Supplemental

Note.
Resequencing and population analysis

Variant calling

The whole-genome resequencing (WGS) paired-end reads were aligned

to the reference sweetpotato genome (http://sweetpotao.com/

download_genome.html) using bwa-mem v.0.7.17 (Li, 2013) and sorted

using samtools v.1.10 (Li et al., 2009) with default parameters. Picard

v.2.23.4 (Broad Institute, 2019) was used to label PCR duplicates on the

basis of mapping coordinates. 120 369 840 genetic variants, including

SNPs and insertions or deletions (indels), were detected as diploid using

the Genome Analysis Toolkit v.4.1.8.1 (Poplin et al., 2017).

Approximately 88% of raw variants were filtered out using VCFtools

v.0.1.17 (Danecek et al., 2011) with the following parameters: –minDP 3

–minQ 30 –max-missing 0.8 –maf 0.05. SNPs were then filtered on the

basis of linkage disequilibrium using PLINK v.1.90b6.24 (Purcell et al.,

2007) (–indep-pairwise 200 10 0.5) and VCFtools. Finally, a total of

6 326 447 variants were selected and used in phylogenetic and

population genetic diversity analyses.

Phylogenetic analysis

Vcf2phylip v.2.7 (Ortiz, 2019) was used to generate a fasta file by

concatenating all SNPs from the VCF file. A phylogenetic tree of

sweetpotato cultivars/landraces and wild relatives was reconstructed

using IQ-TREE v.1.6.12 (Nguyen et al., 2014) with 1000 ultrafast

bootstrap replicates. The nucleotide substitution model (GTR+F+I+G4)

was selected by IQ-TREE. The phylogenetic tree was rooted with the

diploid wild relatives as the outgroup, and all accessions were plotted

onto a world map using the R package phytools v.0.7-70 (Revell, 2012).

For the coalescence-based tree, we defined 1092 submatrices with

5000 non-overlapping SNPs by splitting the concatenated SNP superma-

trix. We built an ML tree for each submatrix with the same methods used

for the tree of concatenated SNPs. We then generated a species tree us-

ing ASTRAL v.5.7.3 (Zhang et al., 2018). The topology was determined on

the basis of the main clade of the taxa, with one to two outlier individuals

being ignored.

Population structure analysis

PCA was performed using PLINK v.1.90b6.24 (Purcell et al., 2007). The

PCA plots were visualized using the R package ggplot2 (Wickham,

2016). UMAP was performed using the R package umap (Konopka,

2022). The binary PLINK input files were transformed from VCF (variant

call format) files using PLINK. Ancestral population stratification was in-

ferred using Admixture v.1.3.0 (Alexander et al., 2009) with ancestral

population sizes K = 1–10.

Population genetic diversity

Linkage disequilibrium (LD) decaywas calculated using PopLDdecay v.3.27

(Zhang et al., 2019) with default parameters. Nucleotide diversities (qp) were

determined for two populations of tetraploid wild relatives (16 accessions of

the I. batatas 4x group and 12 accessions of I. aequatoriensis) and the

sweetpotato population (23 cultivars/landraces) with VCFtools v.0.1.17
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(Daneceketal., 2011) usinga100-kbslidingwindowwitha10-kbstepsize.A

composite likelihood approach (XP-CLR) was applied to scan for genome-

wide selective sweeps (Chen et al., 2010) using a Python version (https://

github.com/hardingnj/xpclr) with a 100-kb sliding window and a 10-kb

step size. We considered each tetraploid wild relative population as the

reference population and the sweetpotato population as the query

population to identify potential evolution/breeding sweeps. To detect

selective sweeps, we calculated the p ratios (p wild relatives/p sweetpotato)

within the sliding windows. Regions with values of the p ratio, FST, or XP-

CLR that ranked in the top 1% were defined as candidate domestication

sweeps. Gene Ontology enrichment of domestication genes was assessed

with the R package clusterProfiler (Wu et al., 2021).

HPA

We developed the HPA pipeline to investigate the relationship between

each tetraploid accession and cultivated sweetpotato (Supplemental

Figure 12).

Haplotyping

WGS paired-end reads from the sweetpotato cultivars and I. batatas 4x

were mapped to the sweetpotato reference genome using bwa-mem

v.0.7.17-r1188. FreeBayes v.1.3.1-17-gaa2ace8 (Garrison and Marth,

2012) was used to call variants (setting -p 6 for sweetpotato and -p 4 for

the tetraploid wild relative). Ranbow v.2.0 (Moeinzadeh et al., 2020) was

used for genome haplotyping.

Phylogenetic analysis

The syntenic haplotype blocks between each sweetpotato cultivar and

each tetraploid accession were extracted and filtered using the HPA pipe-

line. Sequences within each syntenic haplotype block were aligned using

MAFFT v.7.471 (Katoh and Standley, 2013). For each syntenic haplotype

block, the UPGMA tree and ML tree were reconstructed independently

usingMEGA-CC v.10.1.8 (Kumar et al., 2012, 2018) and IQ-TREE, respec-

tively. The monophyletic ratio, Nsp–Nwr distance, and PI index were

calculated using the HPA pipeline. To enhance accuracy, only trees that

had the same monophyletic judgment with two tree-building methods

(i.e., trees generated based on the same syntenic block by two methods

were both monophyletic or both not monophyletic) were used to calculate

the monophyletic ratio, Nsp–Nwr distance, and PI index. For detailed

identification procedures, refer to the Supplemental Note.

Gene conversion

The syntenic haplotype blocks located within gene regions, containing six

haplotypes of sweetpotato and four haplotypes of I. batatas 4x, were ex-

tracted to detect gene conversion between subgenomes. Disregarding

reverse gene conversion, if there wasno gene conversion in a

specific syntenic haplotype block, the block is expected to have two B1

subgenome haplotypes and four B2 subgenome haplotypes from

sweetpotato and four B2 subgenomehaplotypes from I. batatas 4x. The re-

sultingphylogenetic tree is expected to form twoclades, eachcorrespond-

ing to haplotypes of a particular subgenome. If a gene was converted be-

tween subgenomes, then the number of haplotypes and the tree topology

is expected to vary. Gene conversions were identified by examining the

tree topology (Supplemental Figure 32). The detailed procedures for

determining gene conversion are provided in the Supplemental Note.

IbT-DNA analysis

IbT-DNA detection

PCR detection of IbT-DNA1 and IbT-DNA2 genes was performed as

described previously by Quispe-Huamanquispe et al. (2019). The WGS

paired-end reads were aligned to the IbT-DNA1 and IbT-DNA2 reference

sequences (GenBank: KM052616 and KM052617) using bwa-mem

v.0.7.17 (Li, 2013). The bam files were visualized in Integrative

Genomics Viewer v.2.8.2 (Thorvaldsdóttir et al., 2013) to check the

presence/absence of T-DNA insertions.

Phylogenetic and structure variation

Picard v.2.23.4 (Broad Institute, 2019) was used to label PCR duplicates

on the basis of the mapping coordinates of the bam files. Genetic
16 Molecular Plant 17, 1–20, February 5 2024 ª 2024 The Author.
variants, including SNPs and indels, were detected as diploid using

the Genome Analysis Toolkit v.4.1.8.1 (Poplin et al., 2017). The

phylogenetic analysis methods were the same as those described

under Resequencing and population analysis. The PMB+F+G4

nucleotide substitution model was selected for IbT-DNA1, and the

TVM+F model was selected for IbT-DNA2.

BEDTools genomecov v.2.25.0 (Quinlan, 2014) was used to calculate the

sequencing depth of each locus and record the results as a bedgraph file.

Indel variations were extracted from VCF files and incorporated into the

bedgraph file. The R package ggplot2 (Wickham, 2016) was used to

visualize the annotated bedgraph files, displaying a schematic of the

T-DNA structure and the indels for T-DNA-positive accessions.

Chloroplast genome assembly and phylogenetic analysis

The chloroplast genomes were assembled using SPAdes v.3.14.1

(Prjibelski et al., 2020) and GetOrganelle v.1.7.5 (Jin et al., 2020) and

ranged in size from 160 892 to 161 955 bp. The chloroplast genome

sequences were aligned with MAFFT (Katoh and Standley, 2013) as the

default, and the alignment was further refined using MUSCLE (Edgar,

2004) implemented in MEGA X (Kumar et al., 2018). Gblocks v.0.91b

(Castresana, 2000) was used to remove poorly aligned positions (-b4=5

-b5=h), resulting in a final alignment length of 161 200 bp. The

phylogeny was reconstructed using IQ-TREE v.1.6.12 (Nguyen et al.,

2014) with 1000 ultrafast bootstrap replicates. The nucleotide

substitution model (TVM+F+I) was selected by IQ-TREE. The chloroplast

network was generated using the TCS Network method implemented in

PopART v.1.7 (Leigh and Bryant, 2015).

RNA sequencing (RNA-seq) analysis

Total RNA was isolated from leaf, stem, and root samples of the sweet-

potato cultivar Xushu22. A total of 2 mg RNA per sample was used as

input material for RNA sample preparation. Sequencing libraries were

generated using the NEBNext Ultra RNA Library Prep Kit for

Illumina (E7530L, New England Biolabs, USA). The RNA concentration

of sequencing libraries was measured using a Qubit 3.0 fluorometer,

and insert size was assessed using the Bioanalyzer 2100 system

(Agilent Technologies, CA, USA). The libraries were sequenced on the

Illumina NovaSeq 6000 platform to generate 150-bp paired-end reads.

We also downloaded RNA-seq data from different root developmental

stages of the sweetpotato cultivar Taizhong6 (He et al., 2021). The raw

data were first processed with FastQC (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) to remove adapters and low-quality

sequences. The RNA-seq reads were mapped to the reference genome

using HISAT2 v.2.1.0 (Kim et al., 2019). We assembled and quantified

expressed genes using StringTie v.2.1.4 (Pertea et al., 2015) to

calculate the gene expression levels in each sample as fragments per

kilobase of transcript per million fragments mapped. The expression

matrix was extracted using the R package Ballgown (Frazee et al.,

2015), and the expression heatmap was visualized using the R

package pheatmap (Kolde, 2019). The method of RT–qPCR analysis is

described in the Supplemental Note.
DATA AND CODE AVAILABILITY

The raw DNA sequencing data have been deposited in BIGD un-

der accession number PRJCA004953.

The HPA pipeline and relevant instructions are available at the

Github website (https://github.com/YanMengxiao/HPA). Other

analysis command lines are given in the Supplemental Information.
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